Periodic Building Unit (PerBU): | ABC-6 layer of hexagonally arranged (isolated) 6-rings | |||||
Layer symmetry | P (6) m m | |||||
2D cell parameters | a = 13.05 Å | b = 13.05 Å | gamma = 120° | |||
References |
|||
Tsunoji, N., Gies, H., Funase, N., Kolb, U., Yokoi, T., Masahiro Sadakane, M. and Sano, T. | |||
"Dual Templating for AFX/LEV Intergrowth Zeolite." | |||
Chemistry Letters, 51, 121-123 (2022) |
Examples |
| |||||||||||||||||||||
* relative to the first layer |
Effect on channel system | |
The disorder blocks the 8-ring channel of AFX along [001]. |
Polymorph AFX | |||||
Cell Parameters: | hexagonal | P 63/m m c: (# 194) | |||
a = 13.6740 Å | b = 13.6740 Å | c = 19.6950 Å | |||
α = 90.000° | β = 90.000° | γ = 120.000° | |||
Volume = | 3189.2 Å3 | ||||
Framework Density (FDSi): | 15.1 |
Ring sizes (# T-atoms): | 8 6 4 | ||
Channel dimensionality: | Topological (pore opening > 6-ring): 3-dimensional | ||
ABC-6 sequence: | AABBAACC sequence of ABC-6 layers |
Maximum diameter of a sphere: | |||||||
that can be included | 7.76 Å | ||||||
that can diffuse along | a: 3.73 Å | b: 3.73 Å | c: 3.73 Å | ||||
addional volume data |
Composite Building Units: |
d6r | gme | aft | ||||
In this space group and setting, the PerBUs are stacked along [001] |
Note: This polymorph corresponds to the ordered framework AFX | |
Polymorph LEV | |||||
Cell Parameters: | trigonal | R -3 m:H (# 166) | |||
a = 13.1680 Å | b = 13.1680 Å | c = 22.5780 Å | |||
α = 90.000° | β = 90.000° | γ = 120.000° | |||
Volume = | 3390.5 Å3 | ||||
Framework Density (FDSi): | 15.9 |
Ring sizes (# T-atoms): | 8 6 4 | ||
Channel dimensionality: | Topological (pore opening > 6-ring): 2-dimensional | ||
ABC-6 sequence: | AABCCABBC sequence of ABC-6 layers |
Maximum diameter of a sphere: | |||||||
that can be included | 7.1 Å | ||||||
that can diffuse along | a: 3.53 Å | b: 3.53 Å | c: 2.5 Å | ||||
addional volume data |
Composite Building Units: |
d6r | lev | |||
In this space group and setting, the PerBUs are stacked along [001] |
Note: This polymorph corresponds to the ordered framework LEV | |