SOD NaBr-Sodalite

Si(50), Al(50)

Contributed by Andreas Stein

Verified by B. Schoeman and S. Kowalak

Type Material Na₆Al₆Si₆O₂₄: 2 NaBr ^{a,b}

Method A. Stem, G. Ozin, G. Stucky [1, 2]c

Batch Composition AI(OH)₃ SiO₂: 12.5 NaOH: 7.5 NaBr: 144 H₂O

Source Materials

deionized water

sodium hydroxide (Mallinckrodt, 9 8.7%)

sodium bromide (Mallinckroft, 99.0%)

silica sol (DuPont Ludox HS-40, 40% SiO₂) aluminum hydroxide (Fisher, 99.8%)

Batch Preparation (for 34 g dry product)

- (1) [300 mL water + 60.0 g sodium hydroxide + 154.3 g sodium bromide], stir until dissolved
- (2) [(1) + 30.0 g silica soil, stir rapidly, heat to 95°C
- (3) [200 mL water + 40.0 g sodium hydroxide + 15.6 g aluminum hydroxide], stir, heat at 95°C until dissolved
- (4) [Add hot (3) with hot (2)], shake gel vigorously for 5 minutes

Crystallization

Vessel: 1000 mL capped Teflon bottle

Time: 24 hours Temperature: 95°C Agitation: none

Product Recovery

- (1) Cool to ambient temperature
- (2) Filterd
- (3) Wash with deionized water until filtrate is bromide-free and pH ~7
- (4) Dry at 110°C
- (5) Yield; close to 100% on silica and alumina

Product Characterization

XRD: SOD, no other crystalline or amorphous material detected

Elemental Analysis: Na7.sBr18(AlSiO4)6 e

Crystal Size and Habit: 50-500 nm^f dodecahedra, some malformed dodecahedra and penetration twins

References

[1] A. Stem, G. A. Ozin, G. Stucky, J. Am. Chem Soc. 114 (1992) 5171

- [2] A. Stem, G. Ozin, in Advances in the Synthesis and Reactivity of Solids, Vol. 2, JAI Press, Greenwich, CT, 1994, p. 93
- [3] D. J. Schipper, C. Z. van Doom, P. T. Bolwijn, J. Am. Ceram. Soc. 55 (1972) 256
- [4] R. R. Neurgaonkar, F. A. Hummel, Mater. Res. Bull. 11(1976) 61
- [5] I. F. Chang, J. Electrochem. Soc. 121 (1974) 815
- [6] S. C. Zilio, V. S. Bagnato, J. Phys. Chem. 88 (1984) 1373

Notes

- a. Other anions that can be introduced by various methods include OH⁻, Cl⁻, Br⁻, l⁻, CN, SCN, ClO₃⁻, C1O₄, BrO₃, NO₂⁻, N₃⁻, B(OH)₄, Al(OH)₄⁻, HCO₂, CH₃CO₂⁻, C₂O₄²⁻, CO₃²⁻, SO₃²⁻, SO₄²⁻, MnO₄⁻, SeO₄²⁻, MoO₄², TeO₄²⁻, WO₄²⁻, PO₄³⁻, e.
- b. Synthesis of NaOH-SOD: Na₆Al₆Si₆O₂₄. 2 NaOH. 8 H₂O: batch Al(OH)₃ SiO₂: 5 NaOH: 41 H₂O. [1] Extensive washing, especially with hot water, results in extraction of hydroxide and sodium ions.
- c. Other methods for sodalite synthesis include sintering [3, 4] and structure conversion. [5]
- d. Alternately: centrifuge for 20 minutes, decant mother liquor, add fresh water and disperse the solid phase by shaking, followed by centrifuging. Repeat six times.
- e. Low cation and anion content is due to formation of some OH⁻ containing cages (or anion-free cages in washing). These can be removed by heating the sodalite with NaBr. [6]
- f. The larger crystallites are obtained in more dilute solutions.